MTH 310 HW 5 Solutions

Jan 29, 2016

Section 3.3, Problem 9

Prove that if $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is an isomorphism, it is the identity map.
Answer. Since all isomorphisms are homomorphisms, f maps 0 to 0 by Theorem 3.10. Let $x=f(1) \in \mathbb{Z}$. Then $x=f(1)=f(1 * 1)=f(1) f(1)=x^{2}$. The equation $x=x^{2}$ implies either $x=0$ or $x=1$. However, the former case is impossible since f is injective and 0 already maps to 0 . Therefore $f(1)=1$. By Theorem 3.10 again, $f(-1)=-f(1)=-1$.

Finally, let $n \in \mathbb{Z}$. We want to show $\mathrm{f}(\mathrm{n})=\mathrm{n}$. If $n=0$ we have $f(n)=0$ by 3.10. If $n>0$ we have $f(n)=f(1+1+\ldots+1)=f(1)+\ldots+f(1)=1+\ldots+1=n$ where each ellipses represents addition n times. Finally, if $n<0, f(n)=f(-(-n))=-f(-n)=-(-n)=n$ by the above case and theorem 3.10, which allows us to "pull out the negative" (more formally, using the homomorphism property with -1). Thus for all integers $n, f(n)=n$, so f is the identity.

Section 3.3, Problem 11a and 11d

Give one reason why $f: \mathbb{R} \rightarrow \mathbb{R}$ and $k: \mathbb{Q} \rightarrow \mathbb{Q}$ with $f(x)=\sqrt{x}$ and $k\left(\frac{a}{b}\right)=\frac{b}{a}$ when $a \neq 0$ and $k(0)=0$ are not homomorphisms.
Answer. Note that f is not surjective, since there is no $x \in \mathbb{R}$ with $2^{x}=-1$. Additionally, note that $k\left(\frac{1}{2}+\frac{1}{1}\right)=k\left(\frac{3}{2}\right)=\frac{2}{3} \neq 3=2+1=k\left(\frac{1}{2}\right)+k\left(\frac{1}{1}\right)$.

Section 3.3, Problem 13a

Prove if R, S are rings and $f: R x S \rightarrow R$ with $f(r, s)=r$ is not an injective homomorphism if S isn't the zero ring.

Answer. Note that if f was injective, then since $f\left(0_{R}, 0_{S}\right)=0_{R}=f\left(0_{R}, 1_{S}\right)$ (by theorem 3.10) so $0_{S}=1_{S}$ which implies that S is the zero ring. (Note: If $1=0$ in a ring R with identity, then R is the zero ring. To show this, note that for any $x \in R, x=1 x=0 x=0$. Furthermore, if you don't believe that $0 x=0$ for every $x \in R$, note that $0 x=(0+0) x=$ $0 x+0 x$ so by the cancellation law $0 x=0$).

